
DISCO: AN OBJECT-ORIENTED SYSTEM FORMUSIC COMPOSITION AND SOUND DESIGNHans G. Kaper,1 Sever Tipei,2 and Je� M. Wright31 MCS Division, Argonne National Laboratory, Argonne, IL 60439, USA (kaper@mcs.anl.gov)2 School of Music, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (s-tipei@uiuc.edu)3 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (jmwrgh1@uiuc.edu)Abstract. This paper describes an object-oriented approach to music composition and sounddesign. The approach uni�es the processes of music making and instrument building by usingsimilar logic, objects, and procedures. The composition modules use an abstract represen-tation of musical data, which can be easily mapped onto di�erent synthesis languages or atraditionally notated score. An abstract base class is used to derive classes on di�erent timescales. Objects can be related to act across time scales, as well as across an entire piece, andrelationships between similar objects can replicate traditional music operations or introducenew ones. The DISCO (Digital Instrument for Soni�cation and Composition) system is anopen-ended work in progress.1. INTRODUCTIONThe compositional process is based on the as-sumption that aural events can be ordered in time:a musical composition represents a trajectory insound space. The composer controls the structure,if not the details, of the trajectory and thus thenature of the composition. The control takes theform of an algorithm|a set of rules governing thenature of the objects, their evolution, and theirinterrelations|which de�nes the musical compo-sition. Composing thus means de�ning objectsand relating those attributes that yield a desiredtrajectory in sound space.The object-oriented paradigm and the soft-ware implementation we describe here re
ect thispoint of view. They also provide a way of merg-ing two activities which, traditionally, have beenconsidered separate: writing music and build-ing instruments. With the exception of HarryPartch [Partch, 1960], who built actual instru-ments responsive to his music's structure (basedon ratios), and Xenakis [Xenakis, 1993], who usedstochastic distributions to generate the structureof computer-generated sounds as well as largescale textures, few composers have shown an in-

terest in combining these two areas. The systempresented here treats both activities in a uniformway by using similar logic, objects, and proce-dures. The software modules for music compo-sition and sound design are consistently and com-prehensively interconnected. The resulting code,currently referred to as DISCO (Digital Instru-ment for Soni�cation and Composition), is a workin progress. The system was used recently by oneof the authors for the composition of a piece forviolin and computer-generated tape [Tipei, 2000].2. OBJECTS AND PROPERTIESThe composition modules use an abstract rep-resentation of musical data, which can easily bemapped onto di�erent synthesis languages or, asthe case may be, a traditionally notated score.This is achieved by de�ning \Instrument" and\Property" classes in response to the requirementsof the target output.The Instrument class is essentially a collec-tion of properties that de�ne all of an instrument'scontrol parameters. A very simple instrumentmight be de�ned by the properties \Start Time,"\Duration" and \Pitch." Each property is stored

in a table, which is indexed by a string identi-�er. The Instrument class includes the methodsdescribing the manner in which the instrument'soutput is to be generated. Note that the Instru-ment class does not necessarily correspond to anyactual instrument, but serves rather as an abstrac-tion for de�ning the properties of a given soundobject.The Property class enables us to easily clas-sify the di�erent properties of a sound object.A composition would likely contain a number ofsound objects sharing certain properties, such as\Start Time." In this case, the advantages of thepolymorphic nature of the system become evident,as one can work with these properties withoutknowing the type of instrument. The Propertyclass also incorporates methods to check for thecorrect type of input data. For example, many in-struments share the property \Pitch," which maybe represented as a
oating-point frequency value,as an integer that indexes a tuning table, or as astring spelling the name of a note.3. TIME SCALESThe perception of aural events and their orga-nization in larger structures points to the exis-tence of time scales associated with particular ob-jects. We mention, in order of increasing mag-nitude, the time scales of audio frequencies andof frequency and amplitude modulations, whicha�ect partials and sounds; the time scales asso-ciated with melodic phrases, chordal aggregatesand more complex textures; the time scales oflarger formal units, such as sections and move-ments; and the time scale associated with an en-tire piece [Kaper, 1999a].An abstract base class, \Event," is used toderive classes on di�erent time scales. The Eventclass has a relatively simple structure, which is de-�ned by three attributes: start time, duration andname. Subclasses are derived from it in responseto particular needs.An event may contain other events and thusbecome a \Compound Event." An entire piece isthe most inclusive compound event. At the otherextreme are the \Atomic Events," which do notinclude other events. Partials in a sound or thegraphic symbol of a note in a printed score are ex-

amples of atomic events. \Sections," \Phrases,"\Motives," \Chords" and \Aggreggates" are com-pound events which contain events of shorter orequal duration and may be themselves part oflarger structures|of other compound events.Besides the three inherited attributes (starttime, duration and name), the derived classes havethe property that they can be related to other sim-ilar classes or to classes of �ner or coarser gran-ularity. The type of a class, as well as its poten-tial relations to other classes, are re
ected in theclass's name.Relationships or associations can act acrosstime scales. An example is the congregation ofpartials into sounds, of sounds into chords ormelodic gestures, and of sections into a compo-sition. Also, more sophisticated relationships canbe established between objects at di�erent timescales and/or di�erent locations in the piece. Forexample, the presence of a sound with a particularspectral envelope may trigger the assignment of aspeci�c chord in a remote section of the piece.Relationships between similar objects canreplicate traditional music operations, such astransposition, inversion, and retrograde of a groupof sounds, augmentation/diminution of durationsor pitch intervals, chord inversion or other rear-rangements of sounds in a chord, etc.4. HIGHER LEVEL OF ABSTRACTION\Generator" classes provide the composer withthe ability to generate events based on some spe-ci�c algorithm. They are designed to serve acrosstime scales and can be of a generalized or speci�ctype. For example, a simple random generatorcan create \NumberProperty" objects, which canbe assigned any property of an instrument or eventthat is derived from the NumberProperty class. Aspeci�c generator to create only events of a certaintype can be obtained by combining several simplegenerators into an \Event Generator." One suchutility, already in place, is designed to select thenumber of partials within a sound, the number ofsounds in a cluster, or the number of sections in apiece according to a selected probability distribu-tion. Another utility, the \Envelope" class, alsoin place, reads an envelope and interpolates valuesas necessary, thus giving the user control over the

shape of events on various time scales. Still otherclasses enable the user to assign values manuallyfrom a list of possibilities or by using a script.We intend to design a number of commonalgorithmic composition techniques as Generatorclasses to implement customized algorithmic tech-niques of the composer's design. These classes willbe extendible and can be used by themselves, aswell as in combination.5. METHODS AND APPLICATIONSThe type of classes and the methods to relatethem are determined by the type of music theuser wishes to compose. Objects like \Melody,"\Chord" and \Rhythm," and methods such as\Canon" and \Chorale" anticipate a traditionalcomposition; \Markov," \Stochastic" and \Het-erophony" show a di�erent bend. While the ini-tial emphasis was on less-than-traditional modesof composing, the system has acquired a muchwider scope and now supports traditional, as wellas nontraditional thinking. In addition, it sup-ports sound design for scienti�c soni�cation|the faithful rendition of complex data sets insounds [Kaper, 1999b]. The DISCO system isa truly open-ended work in progress, which iscontinuously being enriched with new classes andmethods.Among the �rst utilities developed for theDISCO system was the \Matrix" class. It was de-signed to enable the choice of a start time and aduration for each section in a Manifold Composi-tion according to certain probability distributions.A Manifold Composition is essentially a collectionof variants of one and the same piece, di�ering indetails but with a similar overall structure [Tipei,1989]. The di�erences between the variants arethe result of stochastic choices. We brie
y explainhow the Matrix class was used to construct theprobability matrices for the choice of start timesand durations.Suppose there are n + 1 time marks in thepiece (including the start time and end time). Thestart time of each section is supposed to coincidewith one of the time marks. The end time of thepiece cannot be the start time of a section, sothere are n possible start times; we label themt1 through tn. Each time mark tj has a certain

weight qj associated with it, which measures thelikelihood of the time mark becoming the starttime of a section. Suppose there are m possiblesections, labeled s1 through sm. Each section sihas a certain (relative) weight wi associated withit; furthermore, si has a certain probability pij tobecome active at the time mark tj . Using the Ma-trix class, a probability matrix P is constructedwith m rows and n columns. The elements of ParePij = Pik=1Pjl=1 wkpklqlPmk=1Pnl=1 wkpklql ; i = 1; : : : ; m;j = 1; : : : ; n:Then Pij is the probability that section si willstart at the time mark tj . Once the start timeshave been chosen, the duration di of each sec-tion si is determined from a probability matrixQ, which is constructed in a similar manner.The matrices P and Q are dynamically ad-justed. Once a start time and a duration havebeen assigned to a particular section, adjustmentsare made to diminish the probability that anyother section is selected during the same time in-terval or at nearby times.The Matrix class enables the assignment ofevents in any order, not necessarily as they ap-pear in the piece|a re
ection of the way mosthuman composers work. The class has the poten-tial of correlating various rationales leading to aparticular selection, and its methods can be usedin connection with any parameter values and in-tervals of any event. Not only sections in a piececan be de�ned this way, but also sounds in a sec-tion, chords and motives in a section, etc. A logi-cal step will be to combine the matrices for theselection of start times and durations into onethree-dimensional matrix and, eventually, to in-clude all parameters in a single multidimensionalmatrix. Any one choice will then be the result of acombination of all available criteria and will deter-mine all aspects of an event. Finding the appro-priate data representation for such a multidimen-sional matrix, however, is not trivial|especiallyin C++.6. INTERFACESAll the basic classes described here have beenimplemented in C++. However, even for ex-perienced programmers, C++ is a di�cult lan-

guage, and although some composers are excel-lent programmers, we cannot assume that all com-posers are willing to spend the time and e�ortto become pro�cient in C++. For this reason,most C++ classes have an analagous interface inPython, an interpreted high-level object-orientedlanguage that is considerably easier to learn thanC++ [Lutz, 1996; Beazley, 1999]. The choice oflanguage is left to the user.The wrapper code that allows the C++classes to be used as Python classes is gener-ated by SWIG [Beazley, 1996], which automatesthe process of combining C and C++ code withhigher-level languages such as Python, Perl andTcl. Although Python is currently the only lan-guage supported by the system, it is relativelysimple to generate wrappers for Perl and Tcl.7. CONCLUSIONIn this paper we have described an object-orientedsystem for music composition and sound design.The object-oriented approach has the advantagethat one can easily add di�erent classes and/ormethods taylored to a particular composition oraesthetic. The code is like an open-ended workin progress, which invites the creation of struc-tures and relationships between sounds not yetemployed.ACKNOWLEDGMENTSThis work was supported by the Mathematical,Information, and Computational Sciences Division

subprogram of the O�ce of Advanced Scienti�c Com-puting Research, U.S. Department of Energy, underContract W-31-109-Eng-38.REFERENCESPartch, H. 1960. Genesis of a Music; An Account ofa Creative Work, Its Roots and Its Ful�llments, NewYork, Da Capo Press, Second Edition (1974).Xenakis, I. 1992. Formalized Music, Thought andMathematics in Music, Revised Edition, PendragonPress, pp. 289{293.Tipei, S. 2000. \AntiPhan" for Violin and Computer-Generated Tape (unpublished).Kaper, H. G. and Tipei, S. 1999a. \Formalizing theConcept of Sound," Proc. Int'l. Computer Music Con-ference, Beijing, China, pp. 387{390.Kaper, H. G., Tipei, S., and Wiebel, E. 1999b. \DataSoni�cation and Sound Visualization," Computing inScience and Engineering, Vol. 1, No. 4, pp. 48{58.Tipei, S. 1989. \Manifold Compositions: A(Super)Computer-Assisted Composition Experimentin Progress," Proc. Int'l. Computer Music Conference,Columbus, Ohio, pp. 324{327.Lutz, M. 1996. Programming Python, O'Reilly & As-sociates.Beazley, D. 1999. Python Essential Reference, NewRiders.Beazley, D. 1996. \SWIG: An Easy to Use Tool for In-tegrating Scripting Languages with C and C++," Pre-sented at the 4th Annual Tcl/Tk Workshop, Monterey,Cal. (http://www.swig.org/papers/Tcl96/tcl96.html)

